
White paper / August 2022

Log Management Best Practices
Shift to effective logging for full-stack observability

03

04

06

09

10

11

12

Introduction

Logging for full-stack observability

An in-depth look at log formats

What not to log	

Conclusion	

New Relic observability platform

References	

	› Traditional logging
	› Full-stack observability

	› Log the right things	
	› Anticipate common scenarios
	› Log meaningful messages	
	› Keep logs simple and concise	
	› Don’t forget the time	
	› Use a parsable log format

	› Categorize and group logs
	› Use logging tools and frameworks
	› Reference large values, don’t include them
	› Share useful views, queries, and alerts

	› Sensitive information	
	› Source code and proprietary data
	› Duplicate information

Contents

Log Management Best Practices / Contents ↑ 3 of 12

Log management has evolved. Organizations have moved
beyond sifting through raw dumps of application and
infrastructure logs whenever something breaks. Logging
now plays a crucial role in an organization’s operations,
business intelligence, and marketing. Logs power
observability. Well-structured logs are a superpower that
enable organizations to understand quickly and easily how
their whole system runs—and even preempt issues.

Using logs for effective observability requires more thought
and care than simply dumping massive quantities of poorly
formatted logs into a database or file. How can organizations
intelligently change their logging practices so that detailed
logs can improve their ability to correlate incidents across
applications and infrastructure, in real time, without having
to toggle between different applications and tools? How can
they better achieve end-to-end observability? How can they
come closer to attaining full-stack observability so it can
serve their businesses?

It’s easy to shift logging practices to ensure that logs
enhance full-stack observability. In this white paper,
we discuss some logging best practices for modern
organizations.

Traditional logging

Traditionally, logging happens in a data silo stored
separately from other systems. In the past, observability
relied on application performance monitoring (APM) and
infrastructure monitoring. While monitoring is important, it
doesn’t tell the entire story inside the logs of applications
and infrastructure devices. Many separate and siloed
monitoring and logging tools are application-centric,
only focus on one piece of the stack, and cannot provide
complete information about what is happening and why.

It’s critical that teams have the information they need to
accelerate time to market, gain greater insight into customer
behavior, and reduce incident response time.

Many organizations either choose not to have granular detail
from their logs and struggle to determine the underlying
cause of issues, or they use separate tools and try to map
log details to errors and traces. Maintaining detailed logs
in separate silos prevents teams from seeing the complete
picture, increases costs and time to market for products,
reduces visibility into the customer experience, and
increases the mean time to resolution (MTTR).

Full-stack observability

The ability to see everything in the tech stack that could affect
the customer experience is called full-stack observability or
end-to-end observability. It is based on a complete view of all
telemetry data (metrics, events, logs, and traces).

Full-stack observability provides complete visibility into how
complex applications and systems perform—ideally from
a single, integrated solution—to troubleshoot incidents,
reduce MTTR, and understand the customer experience.

With full-stack observability, engineers and developers don’t
have to sample data, compromise their visibility into the tech
stack, or waste time stitching together siloed data. Instead,
they can focus on the higher-priority, business-impacting,
and creative coding they love.

Introduction

Introduction

Log Management Best Practices / Contents ↑ 4 of 12

Generating logs for the entire stack can be overwhelming.
Developers and engineers might have questions about what
to log, how much detail to include, and whether too much
data will lead to high costs. Many organizations pay the high
price of centralizing their log management in a different
platform and ultimately are forced to limit the log data
sent based on performance and price. This data sampling
provides limited visibility and value to the business. With this
in mind, we look at some log management best practices for
full-stack observability.

Log the right things

Logs are generated by writing text to a standard output or a
file. The most important decision is selecting what goes into
logs. Logs should include all necessary metadata to help
pinpoint events and root causes when investigating. Log
metadata elements may include error messages or stack
traces and related values, metrics, or events.

Everything an organization logs should have a purpose.
Whether it’s usage data, user events, or application errors
and exceptions, it should be valuable to the team. Log data
information should:

	• Be immediately useful in some way
	• Provide the necessary details to understand underlying

causes and make decisions

Anticipate common scenarios

Logs aren’t just for incident response. Logs can help with
other parts of the business, such as performance profiling or
gathering statistics.

Logging with some common scenarios in mind ensures the
logs provide direct value to the organization. For example,
user interaction logs can provide crucial insight into the

customer experience. System logs can monitor issues or
hardware failures. Detailed application logs may provide
insight into performance and potential problems such as
memory leaks. All of which can be important in making
business decisions.

Log meaningful messages

Log messages are only as valuable as the information and
context they provide. By adding enough detail and making
them understandable, teams can use the logs effectively.
Third-party infrastructure tends to capture the necessary
granular details. Still, for applications written in-house, teams
should always capture the log details that will enable them to
diagnose and determine why an error/event happened so they
can take the necessary actions that impact the business.

For application errors, the message should convey
what is happening with that line of code. For example,
a Transaction Failed error message is not as helpful
as an error message like Transaction Failed: Could
not create user ${path/to/file:line-number}. Logs
that include data about transactions help developers and
engineers see why transactions failed.

Usually, error codes or status codes can indicate the
application’s type of problem. Rather than just outputting
the error code text or number, adding a short description in
the log can save other developers or engineers the time and
effort of looking it up when troubleshooting.

Logs should provide critical information to the organization.
Developers and engineers should avoid logging cryptic or
non-descriptive messages that only limited members of the
team would understand.

Logging for full-stack
observability

Logging for full-stack observability

Log Management Best Practices / Contents ↑ 5 of 12

Keep logs simple and concise

While it’s essential to include enough information within the
log message, the opposite applies as well. Having excessive,
unnecessary data in the message can bloat the log storage
size and costs, slow the search logs, and distract from the
core issue—making it tougher to debug.

Teams should keep logs concise to capture only the most
critical information. Logs should include why an error
happened while avoiding unnecessary noise.

They should provide information about the root cause
of an error without including every little detail about the
environment. For example, if an application failed to connect
and retrieve data from an internal API, it may be helpful to
log any error messages from the API or the network state
information of the environment. It’s likely unnecessary to
include how much memory the application uses or how
many applications are running.

Don’t forget the time

Teams should include a timestamp for logs. While this may
sound obvious, developers and engineers who are used to
writing logs to a database that automatically includes the
date and time might not think to add a timestamp in their log
messages. They should select the most granular level that
makes sense and output it inside logs. High-frequency tasks
may need to track time down to the millisecond, while low-
frequency tasks may only need to track to the minute—or
even the day. What’s important is not simply the granularity
but applying a consistent standard across the organization.

Another potentially obvious and vital note is to synchronize
all systems at the same time so an observability platform
can use the timestamp to correlate log events with other
telemetry data.

Use a parsable log format

An observability platform that can’t extract data from
logs isn’t very helpful. Teams should use a log format that
developers and engineers can parse and keep a consistent
log structure so that it’s easy to collect and aggregate. For
example, New Relic log management makes it easy to define
custom log parsing rules,1 but parsing rules can’t work their
magic if log data is unintelligible.

A good example of an unparsed log format is a default
NGINX access log containing unstructured text. It is useful
for searching but not much else. In an unparsed format,
teams would need to do a full-text search to answer most
questions. Here's an example of a typical line:

127.180.71.3 - - [10/May/2022:08:05:32 +0000]

"GET /downloads/product_1 HTTP/1.1" 304 0 "-"

"Debian APT-HTTP/1.3 (0.8.16~exp12ubuntu10.21)"

After parsing, the log is organized into attributes, like
response code and request URL. Here’s an example of the
same log information in a parsable log format:

{

 "remote_addr":"93.180.71.3",

 "time":"1586514731",

 "method":"GET",

 "path":"/downloads/product_1",

 "version":"HTTP/1.1",

 "response":"304",

 "bytesSent": 0,

 �"user_agent": "Debian APT-HTTP/1.3

(0.8.16~exp12ubuntu10.21)"

}

If the format is entirely custom, setting the log type triggers
customer-defined parsing rules.

If an organization has multiple applications that serve a
common purpose, teams should focus on standardizing a log
format for all the apps. This makes incorporating data into
their observability platform easier, even if the team associated
with each app wants visibility into different attributes.

1 (New Relic, Inc., n.d.)

Logging for full-stack observability

https://newrelic.com/platform/log-management?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper

Log Management Best Practices / Contents ↑ 6 of 12

An in-depth look at
log formats

There are three consistent format categories to how the
text is structured with implications for usability once a log
aggregation tool collects data. The three format categories
are:

	• Structured—One of the most common structured formats
for logging is JSON. Many tools can quickly parse it. It is
very flexible and lightweight. Ideally, all logs generated
are in a structured format. While JSON helps organize
hierarchical data, other examples of structured log data
include common formats like comma-separated values
(CSV) and tab-separated values (TSV).

	• Common—A common format isn’t structured but is well
known, defined, and consistent. The Apache common log
format for access logs is an example. The advantage of a
common format is that many tools can parse the data out
of the box.

	• Custom—If an application isn’t logging in a structured or
common format, it is writing logs with a custom format.
To recognize the start and end of an individual log line
during log forwarding, teams may need to parse. Creating
customer-defined parsing rules helps make the data
more valuable.

Categorize and group logs

Specifying a data model for logs enables teams to search
more effectively. They should define and include attributes
whenever possible to categorize and group logs accordingly.

The OpenTelemetry standards for logs by a coalition of
industry leaders, including New Relic, cover many elements
such as naming conventions and field value definitions.2
While not every framework natively supports a log formatted
to exactly these standards, they can serve as a guideline.

Common attributes that can be useful to have in a log data
model include resources, logs in context, and log levels.

Resources
Resources define when and where the logs came from,
such as:

	• Date and time
	• Machine hostname or identifier
	• Application or service name

The hostname can be meaningful in logs from classic host-
based applications with named environments. A pod or
container ID would better organize logs from containerized
or orchestrated environments.

Often orchestrated or Platform-as-a-Service (PaaS)
environments automatically populate logs with lots of
metadata. This is great for organization, but it is also
important to annotate the logs with useful qualifiers that a
system can't know about, such as product version numbers,
staging vs. production environments, test branches, or A/B
testing versions. Log aggregation means all logs from
multiple sources are collected into the same system. Without
the right metadata, teams can’t identify a real error log in
production from a transaction that failed as part of a test run.

Another resource that can help teams identify the log source
is its log forwarding. For example, most of the log forwarding
solutions provided by New Relic automatically annotate the
data with the type and version of the tool used to ship the
data.

2 (OpenTelemetry, n.d.)

An in-depth look at log formats

Log Management Best Practices / Contents ↑ 7 of 12

Logs in context
It’s useful for teams to see logs in context of issues in their apps and hosts.
For example, the New Relic logs in context feature can add application
information to logs automatically. The New Relic APM agent provides
application performance management data to the logging framework
and includes them in application logs. The result is that logs in context
automatically correlates log data with associated application events and
traces. APM errors and distributed traces link directly to the logs created
during the same transaction as the error or trace. Logs in context creates
this correlation by inserting a span ID, trace ID, and application name into
the log messages. So, teams can bring application and log data together
and troubleshoot much more quickly.

Logs filtered to show errors in context of trace in the New Relic observability platform

An in-depth look at log formats

https://docs.newrelic.com/docs/logs/logs-context/logs-in-context/?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper

Log Management Best Practices / Contents ↑ 8 of 12

Log levels
Developers, DevOps practitioners, and managers sometimes
refer to log levels as severity levels. Log levels describe
the relative importance of the event (with terms such as
debug, info, warning, error, and fatal) and the density level of
information from the logging framework. A severity attribute
helps filter out or discard less critical information so that
teams can look solely for critical errors.

Effective use of log levels can limit the amount of data,
reduce the cost of using a centralized log management
tool, and keep search results speedy. In some instances, it
might not be possible to control how applications generate
logs, but ideally, the log management system can discard
unwanted data. For example, in New Relic, teams can surface
outliers using machine learning-driven patterns based on
the log level. Color-coded log levels also provide a visual
indicator to focus attention on the most critical areas.

Teams should use log levels with care, particularly the
debug log level. Debugging can help capture very verbose
messages associated with a specific behavior, but
unnecessary debugging can create a significantly higher
volume of logs and slow ingestion and search functions
without providing additional value. Larger teams and
projects may benefit from log-level standards for consistent
grouping, categorizing, and logging methods.

Use logging tools and frameworks

Instead of spending time and resources implementing a
logging solution from scratch, using an established, well-
tested logging tool and framework can save teams time
and trouble. For example, New Relic APM language agents
decorate logs with the necessary metadata to provide

access to the automatic logs-in-context feature and forward
logs without the need to install or maintain third-party
software—all in a single deployment.

Using a consistent logging framework simplifies engineering
team adoption, normalizes the log output, and ensures that
teams can uniformly enable logs in context. Teams should be
cautious when introducing logging frameworks and test their
performance impact, just as they would with any new code.

Reference large values, don’t
include them

In some cases, teams need a larger chunk of data from the
log to provide deeper context, like a memory dump or a
set of files or images. It is usually better to save this data
separately or even upload it to a designated server and
reference its location in the log than to save it as a blob
within the log. Teams should keep logs as lightweight as
possible and access the data separately.

Share useful views, queries,
and alerts

Teams should create and share standard visualizations,
queries, and alerts for their logs to provide broader insight into
the current state of their organization and increase cross-
team visibility and communication. That is the power of full-
stack observability.

An in-depth look at log formats

Log Management Best Practices / Contents ↑ 9 of 12

What not to log

It’s tempting to log anything and everything that can be
useful, but teams should avoid some exceptions and pitfalls.

Sensitive information

Teams should handle sensitive information with care. It’s
essential to protect regulated data, such as personally
identifiable information (PII) and credit card numbers, in
accordance with regulations and laws, like the General Data
Protection Regulation (GDPR) in the European Union3 and the
Health Insurance Portability and Accountability Act (HIPAA)
in the United States.4

The Open Web Application Security Project (OWASP)
logging guide specifies what should not be in logs, such
as access tokens, passwords, sensitive information, and
information individuals want to remain private.5

For logs stored on a private server or database, it’s easy to
log PII, such as names and email addresses, accidentally.
To track a specific user’s actions or events, teams should
use anonymous identifiers. Although log data is safe in an
observability platform like New Relic, they should be very
cautious about transmitting PII outside the organization.

Source code and proprietary data

In addition to regulatory and compliance information, teams
may want to avoid storing other sensitive information within
logs, such as source code from applications or protected
data within the organization.

In addition to storing logs securely, it’s important to secure
access to them as well. Information that can reveal trade
secrets or unreleased or unannounced projects and features
does not belong inside logs. So, teams should eliminate this
information from logs, especially if they store logs externally
on a third-party service.

Duplicate information

Adding duplicate information to logs won’t break things,
and having too much information is usually better than not
having enough. However, including duplicate information
can create unnecessary logs that don’t serve a purpose,
leading to higher costs.

3 (European Commission, n.d.)
4 (U.S. Department of Health and Human Services (HHS), n.d.)
5 (Open Web Application Security Project (OWASP), n.d.)

What not to log

Log Management Best Practices / Contents ↑ 10 of 12

Conclusion

Making logs work to enhance full-stack observability supports real-time
decisions that impact the business and ensures developers and engineers
spend less time debugging and responding to incidents and more time
focusing on innovation.

With these best practices in place, logs can provide the necessary detail to
keep everything running smoothly for customers, enable deeper visibility
into the entire stack to resolve issues quicker, and speed development.

Conclusion

Log Management Best Practices / Contents ↑ 11 of 12

New Relic
observability platform

New Relic provides a single, unified platform for all
telemetry data, including detailed logs. The New Relic
observability platform incorporates log management, APM,
infrastructure monitoring, serverless monitoring, mobile
monitoring, browser monitoring, synthetic monitoring,
distributed tracing, Kubernetes monitoring, and more. These
capabilities enable organizations to visualize, analyze, and
troubleshoot their entire software stack. As part of this
platform, New Relic log management enables organizations
to combine logging data with application and infrastructure
monitoring data, resulting in a powerful, all-in-one
observability platform.

New Relic ties together metrics, events, logs, and traces from
the entire software stack integrated with AIOps (artificial
intelligence for IT operations), which enables organizations
to search logs faster and is more affordable than disparate
legacy solutions. Instead of using separate tools in different
parts of the stack, developers and engineers can view all
the detailed logs related to a specific error easily in a unified
view.

Speed and scalability problems in legacy logging solutions
make it challenging to query detailed logs because it can
take minutes or even hours to run with delayed data. In
contrast, a New Relic log management search takes just
seconds, so investigating and responding to incidents in the
full software stack is as fast as possible.

The New Relic observability platform includes log
management, a free tier for low-volume customers, and a
low price per GB that enables teams to ingest all the detailed
logs they need.

APM, infrastructure, event, and access to logs combined in one view

New Relic observability platform

To begin using New Relic log management, sign up for a free
account today. Free accounts include 100 GB/month of data
ingest, one full-platform user, and unlimited basic users.

Sign Up Now

https://newrelic.com/platform?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper
https://newrelic.com/platform?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper
https://newrelic.com/platform/log-management?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper
https://newrelic.com/signup?utm_source=pdf&utm_medium=asset&utm_campaign=global-ever-green-tool-consolidation-logs&utm_content=whitepaper

Log Management Best Practices / Contents ↑ 12 of 12

References

© Copyright 2022, New Relic, Inc. All rights reserved. All
trademarks, trade names, service marks and logos referenced
herein belong to their respective companies. 08.2022

References

	Introduction
	Traditional logging
	Full-stack observability

	Logging for full-stack observability
	Log the right things
	Anticipate common scenarios
	Log meaningful messages
	Keep logs simple and concise
	Don’t forget the time
	Use a parsable log format

	An in-depth look at log formats
	Categorize and group logs
	Use logging tools and frameworks
	Reference large values, don’t include them
	Share useful views, queries, and alerts

	What not to log
	Sensitive information
	Source code and proprietary data
	Duplicate information

	New Relic
observability platform

